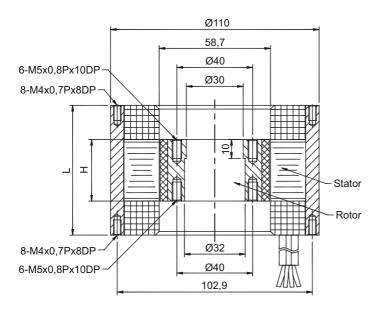
HIWIN-Rundtische und Torque-Motoren

5. Torque-Motoren – Baureihe TMR

5.1 Allgemeine Informationen


Die Torque-Motoren der Baureihe TMR sind einbaufertige Motorelemente bestehend aus Stator und Rotor. Der Rotor ist als Ringelement ausgeführt. Passende Kreuzrollenlager zur Lagerung der Torquemotoren finden Sie in Kapitel 7.

- o bürstenloser Antrieb
- Hohlwellen-Rotor
- wartungsfrei

5.2 Torque-Motoren Baureihe TMRO

5.2.1 Abmessungen Torquemotoren TMR0

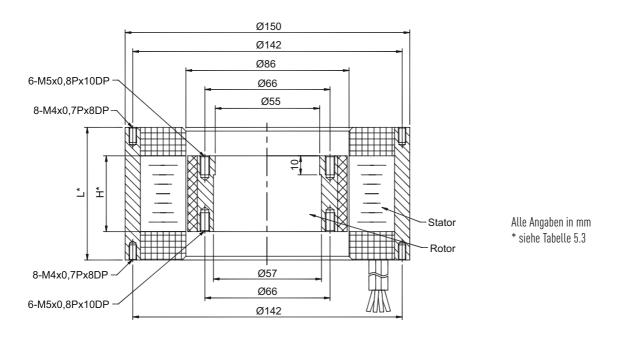
Alle Angaben in mm
* siehe Tabelle 5.1

5.2.2 Mechanische Parameter TMR0

Tabelle 5.1 Mechanische Parameter TMR0

	Symbol	Einheit	TMR03	TMR07
Spitzenmoment für 1 Sek.	T_p	Nm	7,70	15,50
Dauermoment (Spulentemp. 80 °C)	T _c	Nm	3,10	6,20
Stillstandsmoment (Spulentemp. 80 °C)	Ts	Nm	2,15	4,35
Polanzahl	2p	_	10,00	10,00
Trägheitsmoment des Rotorringes	J	kgm ²	0,0003	0,0005
Motormasse	M_{m}	kg	4	7
Statorhöhe	L	mm	68,5	101
Rotorhöhe	Н	mm	32,5	65
Motorkabellänge Standard		mm	500	500

5.2.3 Elektrische Parameter TMR0


Tabelle 5.2 Elektrische Parameter TMR0

	Symbol	Einheit	TMR03	TMR07
Spitzenstrom für 1 Sek.	I _p	A _{eff}	5,00	5,00
Dauerstrom (Spulentemp. 80 °C)	Ic	A _{eff}	2,00	2,00
Stillstandsstrom (Spulentemp. 80 °C)	Is	A _{eff}	1,41	1,41
Motorkonstante (Spulentemp. 25 °C)	K _m	Nm/√W	0,50	0,70
Wicklungswiderstand (Spulentemp. 25 °C) 1)	R ₂₅	Ω	3,55	6,20
Motorinduktivität ²⁾	L	mH	7,60	15,20
Elektrische Zeitkonstante	T _e	ms	3,5	3,5
Drehmomentenkonst. (Spulentemp. 80 °C)	K _t	Nm/A _{eff}	1,55	3,10
Spannungskonstante	K _u	V _{eff} /(rad/s)	0,82	1,70
Therm. Widerstand	R _{th}	K/W	1,80	1,00
Thermoschalter			PTC; Schaltp	unkt bei 100°C
Max. Zwischenkreisspannung		V	600	600

¹⁾ Strangwiderstand ²⁾ Stranginduktivität

5.3 Torque-Motoren Baureihe TMR1

5.3.1 Abmessungen Torquemotoren TMR1

Torque-Motoren

5.3.2 Mechanische Parameter TMR1

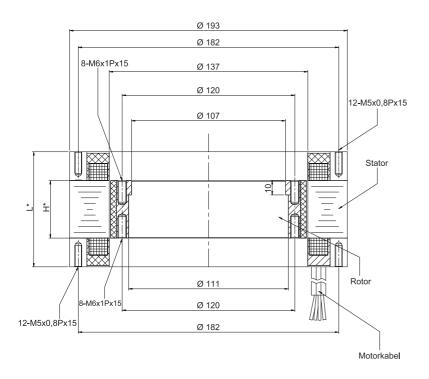
Tabelle 5.3 Mechanische Parameter TMR1

	Symbol	Einheit	TMR12	TMR14	TMR16	TMR18
Spitzenmoment für 1 Sek.	T_p	Nm	12,5	25	37,5	50
Dauermoment (Spulentemp. 80 °C)	T _c	Nm	5	10	15	20
Stillstandsmoment (Spulentemp. 80 °C)	Ts	Nm	3,5	7,0	10,5	14
Polanzahl	2p	_	22	22	22	22
Trägheitsmoment des Rotorringes	J	kgm ²	0,006	0,0065	0,007	0,0075
Motormasse	$M_{\rm m}$	kg	5,7	7	8,3	9,5
Statorhöhe	L	mm	50	70	90	110
Rotorhöhe	Н	mm	20	40	60	80
Motorkabellänge Standard		mm	500	500	500	500

5.3.3 Elektrische Parameter TMR1

Tabelle 5.4 Elektrische Parameter TMR1

	0 1 1	F1 1 11	TMD40	TMD4/	TMD4/	TMD40	
	Symbol	Einheit	TMR12	TMR14	TMR16	TMR18	
Spitzenstrom für 1 Sek.	I _p	A _{eff}	10	10	10	10	
Dauerstrom (Spulentemp. 80 °C)	Ic	A _{eff}	4	4	4	4	
Stillstandsstrom (Spulentemp. 80 °C)	Is	A _{eff}	2,8	2,8	2,8	2,8	
Motorkonstante (Spulentemp. 25 °C)	K _m	Nm/√W	0,6	1	1,3	1,6	
Wicklungswiderstand (Spulentemp. 25 °C) 1)	R ₂₅	Ω	1,3	1,95	2,6	3,3	
Motorinduktivität ²⁾	L	mH	4,1	7	10	13	
Elektrische Zeitkonstante	T _e	ms	3,5	3,5	3,5	3,5	
Drehmomentenkonst. (Spulentemp. 80 °C)	K _t	Nm/A _{eff}	1,25	2,5	3,75	5	
Spannungskonstante	K_{u}	V _{eff} /(rad/s)	0,6	1,2	1,8	2,4	
Therm. Widerstand	R _{th}	K/W	1,2	0,8	0,6	0,5	
Thermoschalter			PTC; Schaltpunkt bei 100°C				
Max. Zwischenkreisspannung		V	600	600	600	600	


¹⁾ Strangwiderstand

²⁾ Stranginduktivität

5.4 Torque-Motoren Baureihe TMR3

5.4.1 Abmessungen Torquemotoren TMR3

Alle Angaben in mm * siehe Tabelle 5.5

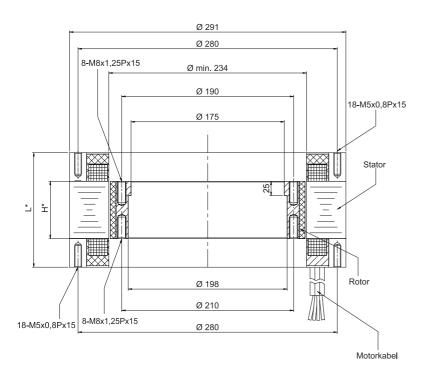
5.4.2 Mechanische Parameter TMR3

Tabelle 5.5 Mechanische Parameter TMR3

	Symbol	Einheit	TMR32	TMR34	TMR34L	TMR38	TMR38L	TMR3C	TMR3CL
Spitzenmoment für 1 Sek.	T_p	Nm	32	64	64	122	122	182	182
Dauermoment (Spulentemp. 100 °C)	T_c	Nm	15	27	27	51	51	76	76
Stillstandsmoment (Spulentemp. 100 °C)	T_s	Nm	10	19	19	37	37	54	54
Polanzahl	2p	_	22	22	22	22	22	22	22
Trägheitsmoment des Rotorringes	J	kgm ²	0,0140	0,0200	0,0200	0,0260	0,0260	0,0350	0,0350
Motormasse	M_{m}	kg	5,5	7,4	7,4	11,8	11,8	16,2	16,2
Statorhöhe	L	mm	60	80	80	120	120	160	160
Rotorhöhe	Н	mm	20	40	40	80	80	120	120
Motorkabellänge Standard		mm	3000	3000	3000	3000	3000	3000	3000

Torque-Motoren

5.4.3 Elektrische Parameter TMR3


Tabelle 5.6 Elektrische Parameter TMR3

	Symbol	Einheit	TMR32	TMR34	TMR34L	TMR38	TMR38L	TMR3C	TMR3CL
Spitzenstrom für 1 Sek.	I _p	A _{eff}	9,8	9,8	19,5	9,8	19,5	9,8	19,5
Dauerstrom (Spulentemp. 100 °C)	Ic	A _{eff}	3,7	3,7	7,3	3,7	7,3	3,7	7,3
Stillstandsstrom (Spulentemp. 100 °C)	Is	A _{eff}	1,9	1,9	2,7	1,9	2,7	1,9	2,7
Motorkonstante (Spulentemp. 25 °C)	K _m	Nm/√W	1,0	2,1	2,1	3,4	3,4	4,2	4,2
Wicklungswiderstand (Spulentemp. 25 °C) 1)	R ₂₅	Ω	2,9	4,3	1,1	7,2	1,8	10,1	2,6
Motorinduktivität ²⁾	L	mH	10	16	4	27	6,8	37	9,3
Elektrische Zeitkonstante	T _e	ms	3,9	3,9	3,9	3,9	3,9	3,9	3,9
Drehmomentenkonstante	K _t	Nm/A _{eff}	3,5	7,0	3,5	14	7,0	21,0	11,5
Spannungskonstante	K _u	V _{eff} /(rad/s)	1,6	3,2	1,8	6,4	3,7	9,6	5,5
Therm. Widerstand	R _{th}	K/W	0,70	0,58	0,58	0,41	0,41	0,29	0,29
Thermoschalter				PTC; Schaltpunkt bei 100 °C					
Max. Zwischenkreisspannung		V	750	750	750	750	750	750	750

¹⁾ Strangwiderstand

5.5 Torque-Motoren Baureihe TMR7

5.5.1 Abmessungen Torquemotoren TMR7

Alle Angaben in mm * siehe Tabelle 5.7

²⁾ Stranginduktivität

5.5.2 Mechanische Parameter TMR7

Tabelle 5.7 Mechanische Parameter TMR7

	Symbol	Einheit	TMR74	TMR74L	TMR76	TMR76L	TMR7C	TMR7CL
Spitzenmoment für 1 Sek.	T_p	Nm	162	162	234	234	468	468
Dauermoment (Spulentemp. 100 °C)	T _c	Nm	65	65	95	95	193	193
Stillstandsmoment (Spulentemp. 100 °C)	T_s	Nm	45	45	67	67	137	137
Polanzahl	2 _p	_	44	44	44	44	44	44
Trägheitsmoment des Rotorringes	J	kgm ²	0,1520	0,1520	0,1740	0,1740	0,2410	0,2410
Motormasse	M_{m}	kg	11,1	11,1	15,1	15,1	26	26
Statorhöhe	L	mm	80	80	100	100	160	160
Rotorhöhe	Н	mm	40	40	60	60	120	120
Motorkabellänge Standard		mm	3000	3000	3000	3000	3000	3000

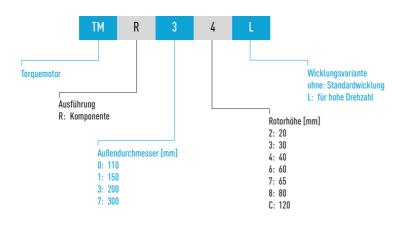

5.5.3 Elektrische Parameter TMR7

Tabelle 5.8 Elektrische Parameter TMR7

	Symbol	Einheit	TMR74	TMR74L	TMR76	TMR76L	TMR7C	TMR7CL
Spitzenstrom für 1 Sek.	I_p	A _{eff}	10,4	20,8	10,4	20,8	10,4	20,8
Dauerstrom (Spulentemp. 100 °C)	Ic	A _{eff}	3,7	7,3	3,7	7,3	3,7	7,3
Stillstandsstrom (Spulentemp. 100 °C)	Is	A _{eff}	1,9	2,7	1,9	2,7	1,9	2,7
Motorkonstante (Spulentemp. 25 °C)	K _m	Nm/√W	3,4	3,4	4,5	4,5	8,5	8,5
Wicklungswiderstand (Spulentemp. 25 °C) 1)	R ₂₅	Ω	8,0	2	10,4	2,6	20,2	5,1
Motorinduktivität ²⁾	L	mH	32	8	42	10,5	84	21
Elektrische Zeitkonstante	T _e	ms	4	4	4	4	4	4
Drehmomentenkonstante	K _t	Nm/A _{eff}	16,9	8,5	25,4	12,7	50,1	25,05
Spannungskonstante	K_u	V _{eff} /(rad/s)	7,2	3,6	10,8	5,4	21,6	10,8
Therm. Widerstand	R _{th}	K/W	0,31	0,31	0,25	0,25	0,18	0,18
Thermoschalter			PTC; Schaltpunkt bei 100 °C					
Max. Zwischenkreisspannung		V	750	750	750	750	750	750

¹⁾ Strangwiderstand

5.6 Bestellcode Torque-Motoren Baureihe TMR

²⁾ Stranginduktivität

HIWIN-MAGIC - Magnetische Wegmess-Systeme

6. HIWIN-MAGIC - Magnetische Wegmess-Systeme

Die magnetischen Wegmess-Systeme der HIWIN-MAGIC-Baureihe sind optimiert für die Wegmessung bei linearen Bewegungen und dabei besonders in Linearmotorachsen. Die Messsysteme bestehen aus einem magnetischen Maßkörper auf einem Edelstahl-Trägerband und einer superflachen Abtasteinheit. Das robuste Gehäuse mit exzellenter elektrischer Abschirmung und die Signalausgabe in Echtzeit machen den HIWIN-MAGIC zum Wegmess-System der Wahl für anspruchsvolle Anwendungen. Der HIWIN-MAGIC-PG hat eine spezielle Bauform, die es ermöglicht, den Lesekopf direkt an einen Laufwagen zu montieren. Das Maßband ist dann in die Führungsschiene integriert.

- o berührungslose Messung mit 1 V_{pp} -oder Digital-Ausgang
- O Auflösung digital bis zu 0,5 μm
- O Abtasteinheit und Maßkörper sind unempfindlich gegen Staub, Feuchtigkeit, Öl und Späne
- Abtasteinheit mit Metallgehäuse und Schutzart IP67
- einfache Befestigung und Justage
- Signalausgabe in Echtzeit
- o spezielles Gehäuse zur Optimierung der EMV

6.1 Abtasteinheiten

Abtasteinheit HIWIN-MAGIC

- Optimiert für den Einsatz mit Linearmotoren
- Maßband separat

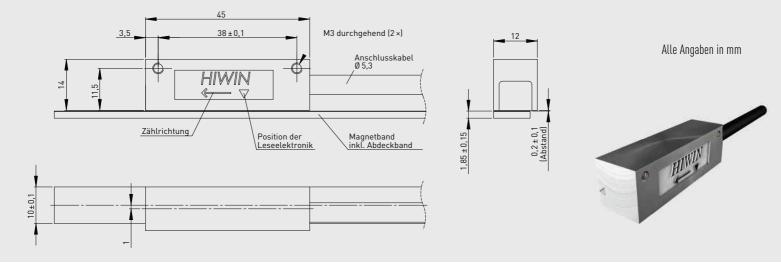


Tabelle 6.1 Art.-Nr. MAGIC-Leseköpfe

Ausgangssignal	Index	Kabellänge	ArtNr.
1 V _{pp}	Multi-Index (Indexabstand 1 mm)	5 m	8-08-0120
TTL	Multi-Index (Indexabstand 1 mm)	5 m	8-08-0122

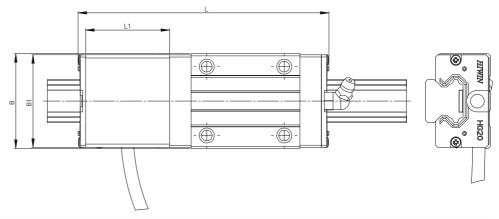
Tabelle 6.2 Technische Daten magnetische Wegmess-Systeme HIWIN-MAGIC und HIWIN-MAGIC-PG


Тур	1 V _{pp} (analog)	TTL (digital)			
Elektrische Eigenschaften					
Spezifikation Ausgangssignal	sin/cos, 1 V _{pp}	Quadratursignale nach RS 422			
Auflösung	unendlich, Signalperiode 1 mm	1 μm			
Wiederholgenauigkeit bidirektional	0,01 mm	0,01 mm			
Absolute Genauigkeit	siehe Genauigkeitsklasse des Ma	gnetbandes (Tabelle 6.3, Seite 30)			
Referenzsignal*	siehe Tabelle	e 6.4, Seite 31			
Betriebsspannung	5 V ± 5 %	5 V ± 5 %			
Stromverbrauch	typ. 35 mA, max. 70 mA	typ. 70 mA, max. 120 mA			
Max. Messgeschwindigkeit	10 m/s	1 m/s			
Störschutzklasse	3, nach IEC 801				
Mechanische Eigenschaften					
Gehäusematerial	hochwertige Aluminiumlegieru	ng, Sensorboden aus Edelstahl			
Abmessungen Sensorkopf MAGIC	L × B × H: 45 mm	× 12 mm × 14 mm			
Kabellänge	5 m				
Min. Biegeradius Kabel	40 mm	40 mm			
Schutzklasse	IP67	IP67			
Betriebstemperaturen	0 °C bis +50 °C				
Gewicht Sensorkopf MAGIC	80 g	80 g			
Gewicht Sensorkopf MAGIC-PG	80 g	80 g			
MAGIC-PG passend für Laufwagen	Typ HG20 und HG25				

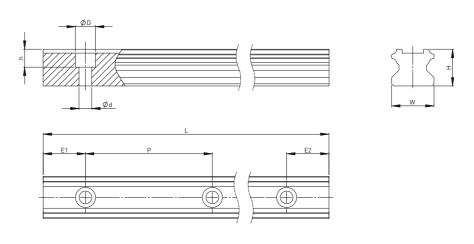
^{*} nutzbar mit Näherungsschalter (siehe Kapitel 6.6)

Hinweis: Das Mess-System HIWIN-MAGIC-PG kann auch komplett montiert mit einer Profilschienenführung (Typ PG) geliefert werden. Details zum Bestellcode entnehmen Sie bitte unserem Katalog "Profilschienenführung".

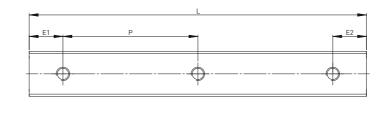
Abtasteinheit HIWIN-MAGIC-PG


- Optimiert für den Einsatz mit Linearmotoren
- Maßband integriert in Führungsschiene
- Messkopf montierbar an Laufwagen der Baugrößen HG-20 und HG-25

PG-Baureihe


6.2 Abmessungen HIWIN MAGIC-PG

1. Laufwagen mit Abtasteinheit


Maß [mm]	HG_20CA	HG_20HA	HG_25CA	HG_25HA	
L	116,5	131,2	121,0	141,6	
L1	39,0	39,0	37,0	37,0	
B1	43,0	43,0	46.4	46.4	

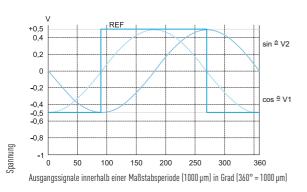
2. Profilschiene mit Nut, Montage von oben

Maß [mm]	d	D	h	Н	W	P	
HGR20R	6,0	9,5	8,5	17,5	20,0	60,0	
HGR25R	6,0	9,5	8,5	22,0	23,0	60,0	

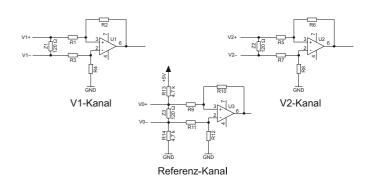
3. Profilschiene mit Nut, Montage von unten

Maß [mm]	S	D	h	Н	W	P	
HGR20T	M6	9,5	10,0	17,5	20,0	60,0	
HGR25T	M6	9,5	12,0	22,0	23,0	60,0	

6.3 Anschluss Analog- und Digitalvariante

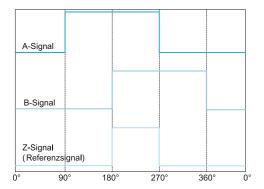

Kabelbelegung (bei Analog- und Digital-Variante)

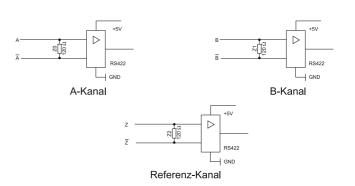
Verwendet wird ein hochwertiges, kabelschlepptaugliches 8-adriges Kabel, jeweils V1+, V1-; V2+, V2- und V0+, V0- (bzw. A, Ā; B, B und Z, Z̄ bei der digitalen Variante) twisted pair und doppelt geschirmt.


6.4 Formate und Ausgänge Analogvariante sin/cos 1 V_{pp}

Signal format sinus/cosinus 1 V_{pp} -Ausgang

Die elektrischen Signale nach dem Differenzeingang der Folgeelektronik. Die HIWIN-MAGIC-PG-Schnittstelle sinus/cosinus 1 V_{pp} orientiert sich streng an der Siemens Spezifikation. Die Periodenlänge des Sinusausgangssignals beträgt 1 mm. Die Periodenlänge des Referenzsignals beträgt 1 mm.


Empfohlene Schaltung der Folgeelektronik bei sinus/cosinus $1\,V_{no}$ -Ausgang


6.5 Formate und Ausgänge Digitalvariante TTL

Digitaler TTL-Ausgang

- Signale an A- und B-Kanal um 90° phasenverschoben (gemäß RS422-Spezifikiation nach DIN 66259)
- \circ Empfohlener Abschlusswiderstand Z = 120 Ω
- ullet Ausgangssignale: A, \overline{A} und B, \overline{B} und Z, \overline{Z}
- Einzel-Referenzpuls (optional)
- Definition einer Minimalpulsdauer (optional)

Empfohlene Schaltung der Folgeelektronik bei digitalem TTL-Ausgang

HIWIN-MAGIC – Magnetische Wegmess-Systeme

6.6 Magnetband

Tabelle 6.3 Technische Daten Magnetband

Bestellcode	8-08-0028-xxxx	Edelstahlabdeckband
(xxxx = Länge [mm])	inkl. Edelstahlabdeckband)	
•		
Genauigkeitsklasse ¹⁾	± 20 µm/m	-
Längenausdehnungskoeffizient	11,5 × 10-6 K-1	
Periode	1 mm	-
Dicke		
Magnetband alleine	1,70 ± 0,10 mm	-
mit Edelstahlabdeckband	1,85 ± 0,15 mm	-
inkl. Klebeband		ca. 0,15 mm
Breite	$10,05 \pm 0,10 \text{mm}$	10 mm
Maximallänge	100 m	100 m
Magnetische Remanenz	> 240 mT	-
Pollänge (Abstand Nord-Südpol)	1 mm	-
Einzelreferenzmarken	optional	-
Material	Elastomere, Nitril und EPDM	Edelstahl, Klebeband
Gewicht	70 g/m	-

¹⁾ bei 20 °C

Beispiel: Magnetband separat (A) ohne Abdeckband und integriert in eine Führungsschiene (B) mit Edelstahlabdeckband

6.7 Referenzschalter

Der MAGIC- bzw. MAGIC-PG-Lesekopf gibt ein periodisches Referenzsignal aus (vgl. Tabelle 6.1). Dieses kann als Triggersignal für einen Referenzschalter ("Nockenschalter") verwendet werden, der beliebig im Verfahrweg platziert werden kann.

HIWIN bietet einen solchen Referenzschalter als optionales Zubehör an.

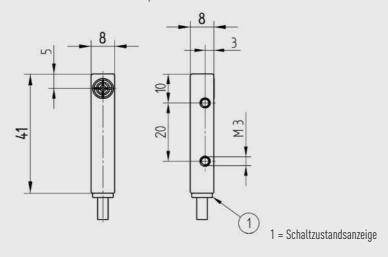
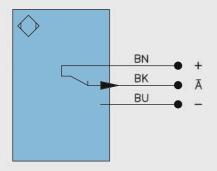



Tabelle 6.4 Technische Daten des Referenzschalters

Induktiv	
Schaltabstand	2 mm
Korrekturfaktor V2A / Messing / Al	0,73 / 0,49 / 0,39
Einbauart	bündig
Schalt-Hysterese	< 15 %
Elektrisch	
Versorgungsspannung	1030 V DC
Stromaufnahme (Ub = 24 V)	< 6 mA
Schaltfrequenz	1500 Hz
Temperaturdrift	< 10 %
Temperaturbereich	-2580 °C
Spannungsabfall Schaltausgang	100 mA
Reststrom Schaltausgang	< 100 μΑ
kurzschlussfest	ja
verpolungssicher	ja
überlastsicher	ja
Mechanisch	
Gehäusematerial	Kunststoff
Vollverguss	ja
Schutzart	IP 67
Anschlussart	Kabel
Kabellänge	2 m, 4 m
Schutzisolierung, Bemessungsspannung	50 V

HIWIN-MAGIC – Magnetische Wegmess-Systeme

Schaltbild des optionalen Referenzschalters

Symbolerklärung

- + Versorgungsspannung "+"
- Versorgungsspannung "OV"
- A Schaltausgang / Öffner (NC)

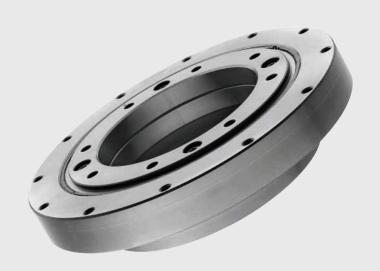
Adernfarben

BN braun

BK schwarz

BU blau

Lagerung

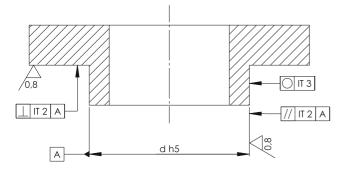


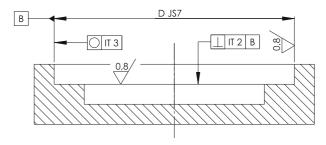
7. HIWIN Kreuzrollenlager

7.1 Allgemeine Informationen

HIWIN Kreuzrollenlager sind in ihren Eigenschaften auf den Einsatz in Rundtischen optimiert. Durch die spezielle Anordnung der Zylinderrollen nehmen diese Lager axiale Kräfte aus beiden Richtungen sowie radiale Kräfte, Kippmomentbelastungen und beliebige Lastkombinationen mit einer Lagerstelle auf. Eine zweite Lagerstelle wird daher in den meisten Fällen nicht benötigt. Dadurch lassen sich Einbauraum und Kosten einsparen. HIWIN Kreuzrollenlager sind sehr steif, haben eine hohe Laufgenauigkeit und werden vorgespannt geliefert.

- vorgespannt
- hohe Steifigkeit
- O Planlauf ca. 0,004 mm
- Abdichtung durch schleifende Blechdichtungen (gegen Fettverlust)

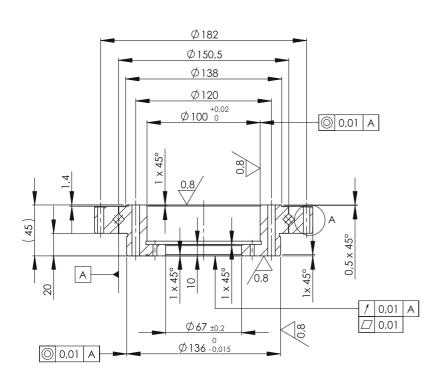


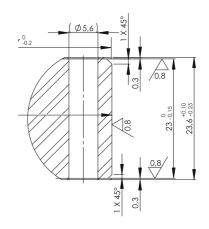

7.2 Tragzahlen der Kreuzrollenlager

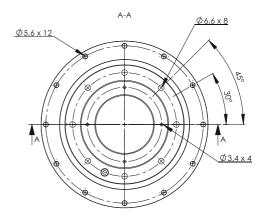
Artikelnummer	Aussendurchmesser	Innendurchmesser		Tragzahl			
	[mm]	[mm]	dy	dynamisch		statisch	
			radial [kN]	axial [kN]	radial [kN]	axial [kN]	
8-18-0009	200	100	52,8	55,8	81,8	190,8	
8-18-0012	300	160	69,4	73,0	138,0	319,6	

7.3 Einbautoleranzen der Kreuzrollenlager

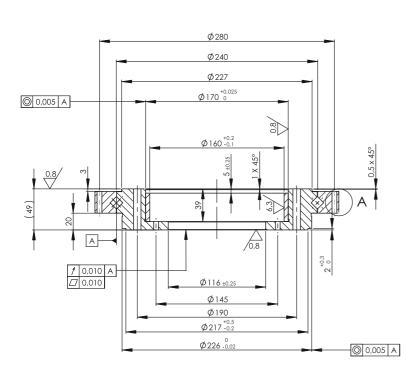
Kreuzrollenlager sind hochbelastbar und können radiale, axiale und auch Belastungen durch Kippmomente aufnehmen. Um diese Eigenschaften optimal nutzen zu können, müssen nachfolgende Einbautoleranzen für die Anschlusskonstruktion eingehalten werden.

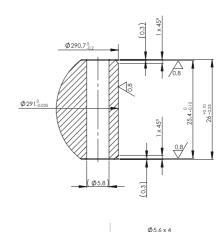


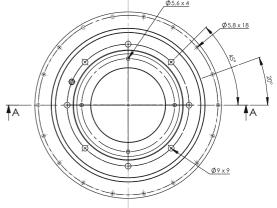



Lagerung

7.4 Abmessungen der Kreuzrollenlager


7.4.1 Abmessungen Artikel 8-18-0009





7.4.2 Abmessungen Artikel 8-18-0012

Profilschienenführungen

Kugelgewindetriebe

Linearachsen mit Kugelgewindetrieb

Linearmotor-Systeme

Rundtische

Elektrohubzylinder

Kugelbüchsen

HIWIN - Ihr Experte für Lineartechnik.

Franz-Lenz-Str. 4
49084 Osnabrück
Telefon +49 (0) 5 41 33 06 68 - 0
Telefax +49 (0) 5 41 33 06 68 - 29
osnabrueck@hiwin.de
www.hiwin.de

Biuro dystrybucji Warszawa ul. Puławska 405 PL-02-801 Warszawa Telefon +48 (0) 22 544 07 07 Telefax +48 (0) 22 544 07 08 info@hiwin.pl www.hiwin.pl

Értékesítési Iroda Budapest

HIWIN Technologies Corp. No. 46, 37th Road Taichung Industrial Park Taichung 407, Taiwan Telefon +886-4-2359-4510 Telefax +886-4-2359-4420 business@hiwin.com.tw www.hiwin.com.tw

